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Mechanical Breakdown of Oriented Solids

Under Time Dependent Loads*

S. R. Moghe and C. C. Hsiao
University of Minnesota, Minneapollis, Minnesota

A general theory describing the time dependent
mechanical breakdown phenomena for homogeneous, oriented

The kinetlc nature of the microscopic molecular bechavior
is taken into account. Approximate solutions for time
required to fracture under repeated loading conditions
are examined. Some parameters involved in the theory
are discussed. Within a large range of various applied
periodic tensile stresses the logarithm of time-to-
fracture is found to be almost linearly related with
the maximum amplitude of the applied stress. As this
maximum amplitude gets smaller and smaller the time
required for fracture becomes greater and greater and
approaches to infinity for a certain small limiting
value.

*Supported in part by the National Aeronautlics and
Space Administration




INTRODUCTION

This report is a continuation of a series of
au"t:iclesl_4 on the development of a theory concerning
fhe time dependent nature of the mechanical breakdown
of homogeneous, oriented, and stressed solids. We
shall consider here the strength behavior of a solid
affected by microscopic changes when subjected to time
dependent loads, particularly those represented by
periodic loading functions.

The theory of breaking kinetics is concerned with
the problem of calculating the expected distribution of
times-to-break for a representative element oriented in
different possible directions and in turn for an entire
solid composed of a system of elements when subjected
to time dependent loading histories. During the
loading process, until the occurrence of fracture,
the variation in the molecular forces represented by
the elements throughout the solid must be considered
in the analysis. The strength behavior such as the
ultimate strength of the solid is intimately tied to
the strength distribution and orientation of all the
individual microscopic elements in the entire solid. In
order to take into account these features, the mathemat-
ical model used throughout the course of this analysis
i1s a matrix of oriented elements embedded in an arbitrary
domaln. For simplicity, consider that the model consists
of a large number of identical linear elements distributed
continuously in the entire system. For such a system,
the state of stress in the vicinity of a point in the

solid may be expressed by the time dependent stress




tensor Gij (i, = 1,2,3) in a rectangular coordinate

system
o, 5(est) =fp(9,¢,s) p(0,¢,8).£(0,¢,8)s, 5 dw (1)

where € represents a state of finite homogeneous
strain which serves as a measure of the orientation
of the elements resulted from deformation, t identifies
the time. p(@,¢,e) 1s the probability density of the
distribution function of orientation designated by
spherical coordinates (0,¢), ¥(8,¢,t) is the time
dependent axial stress on any representative element
along the direction defined by the spherical coordinates
(6,9), £(8,¢,t) is the fraction of unbroken elements
as a function of orientation and time, Si and sj are
unit vectors, and dw is an infinitesimal solid angle
within which the elements are considered to be parallel.
Integration is performed so as to cover all the possible
orientation of the elements contained in the entire
solid.

Depending upon the nature of molecular constitution,
two limiting cases or their combinations may be realized.
For a system of randomly oriented elements, if e is a

. . 1
measure of homogeneous finifte strain, then

(1 + 8)3
6,6,¢) = 0 2
p(0.9.¢) [00329 + (1 + E)BSinQQ]S/2 p(0) (2)

where p(0) = 1/4m, a constant, represents the random
distribution function of orientation. In the case of
a system with randomly oriented and flexibly connected

elements at their end joints2



P(e;¢>:8) = [COSQ 5 > p(O)
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where o 1s associated with € as follows

2 4o a+l
£ = ajj{a + 1 + o1 1in 2@]

The gquantity £(6,¢,t) is introduced through
considering the absolute reaction rate and nonlinear

viscosity. It's time rate of change can be given as

follows:
2,
A0, 9.8) _ g (1 - £(0,0,1)) - K £(8,0,¢)
where
K, = o, exp[- % - Y (0,6,t))
and
K, = o exp(- %% + BY(6,¢,t)]

are the rate coefficients for reformation and breakage

of the elements respectively. wr, wb, v, B, U and R

are material constants and T is the absolute temperature.

The solutlion to the governing equations (1), (5)
and either (2) or (3) together with an appropriate
fracture criterion will enable us to predict the time
required to fracture tb for a solid.

Let us now consider the strength of a solid with
its constituent elements arbitrarily oriented to any
degree under a general state of stress. 1In the vicinity
of' a point under consideration, let the stress ftensor

be given in the following form:

(3)

(4)

(6)



Oij(t) = ngC(t) (7)

ng are constants and where £(t) is a plecewise

continuous function. Substituting into (1) we obtain

o7 ;¢(t) =fp(e,¢>,e) £(0,¢,t) ¥(0,9,t)s;s 00 (8)

It can be easily shown from the above equation that we
must have the following relation:

f(e:¢:t) 71/(9105;'0) = M(6:¢)C(t) (9)

where 1(6,¢), an arbitrary function dependent solely

upon orientation, is to be determined later. Equation

(3) holds for every representative element in an
arbitrary direction (6,¢).

Eliminating ¥ from (5) and
(9) we obtain,

a£(9:9.8) _ _pe(e,¢,¢),u(0,0)2(t)] (10)

where F is defined as

Fif,ue) = 9 f exp(B42) - 0 (1 - £) exp(- L) (11)

and f is understood to be a function of orientation

(6,¢6) and time t, @, a function of (6,¢) only and ¢,
a function of t only.
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p = @, exp(- %%)
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i

U
®, exp(- gp)

If we eliminate f instead of ¥ from (5) and (9), then

(0:8.5) _ wiy(e,9,t),1(6,6)¢(t)] (12)

where ¥ is defined as

Yvut] =3 G+ o exn(ey) + 0l - 1) exo(- W) (13)

-

and ¥ is understood to be a function of (0,¢) and t.
Equation (10) or (12) depends upon orientation of the
representative element and will have different solutions
along different directions. Assuming that all elements
will break when either £ — 0 or ¥ — ¥ (say) where wb

is a constant, independent of orientation, that is

fracture will occur when

t=t,(0,9), £(8,9,t) = 0; or ¥(6,0,t) =¥ (14)

depending upon whether (10) or (12) is considered.
Also, for convenience without losing generality, we
assume that all the elements are unbroken initially,
and we have '

f(e,¢,0) = 1; w(9:¢50) = %l’o(@:(b)s (t = O) (15)



Now our problem reduces to, firstly, finding the
times-to-break tb(9,¢) for individual elements from
(10) or (12) with the help of (14) and (15); and
secondly correlate the statistical time-to-break Eb
for the entire solid with various values of tb(9,¢).
Let us assume that cij(t) in (7) are such that each
representative element 1s under tension. Then focus-
sing our attention on one representative element, the
problem so defined by (10) or (12), together with
(14) and (15) is well posed and has a solution. Also
it can be shown that f and ¥ are monotone decreasing
and increasing functions respectively of time through-
out the range 0 =t = tb(G,o). Moreover ¥ is real,
finite and non-negative whereas F is real, finite and
non-positive. If pf 1s denoted by ¢ and is a plecewise
continuous function of t, then it follows from (9)
that either £ or ¥ or both must be piecewise continuous.
However, continuity of f is necessary because in a
physical system as defined the number of unbroken
elements would not change abruptly during a discontin-
uous variation in loading. A discontinuity in ¥ arises
because of (9) and is expected in physical systems
even though f is continuous. Therefore, in the case
of a given continuous loading function o, either (10)
or (12) together with (14) and (15) determine the
solution of the problem completely. For a plecewise
loading function ¢ however, we must solve (10) rather
than (12). Now let us assume that

o (8,9) =0 =0

. (6,9) [0 =t = tb(9,¢)]

min

Then clearly the bounds on tb(9,¢) are



1 1 ar
R T = % (00) = | e (16)

max

and equivalently in terms of ¥

wa 7,67 = B(%9) 2 Gw 7,67 (17)
min max

provided that the integrals exist. It may be mentioned

at this stage that in order to get a finite upper bound,
Umin must be greater than some critical va}ug Gor > 0

for which the upper bound becomes infinite“’". Other-

wise the results cease to be meaningful. For a constant
applied load, i.e. o = constant, the solution to either

(10) or (12) can be easily obtained through integration

by quadratureg’:s’4 Also if the time dependent loading
0 1s such that its minimum value is of large magnitude,
the influence of reformation processes on fracture

becomes negligible and (12) reduces to

<

I
ale
QnQa

49 | 0 ¢ exp(p¥) (18)

which yields a solution by gquadrature provided that
o = 00(6,¢) exp(ct) where o depends upon (8,¢) and
¢ is a constant. Then the time-to-break tb(9,¢)
becomes

¥ Qv
%(0:0) = [ greEm, exn(e)] (19)
0(6,9)




which can be evaluated easily. We can obtain the same
result as in (19) by considering equation (10) rather
than (12). This is not surprising since equations (10)
and (12) are derived from the same system of equations
(5) and (9) and are completely equivalent. Such a simple
result cannot be expected, however, if o is not very
large in order to warrant the use of (18) or is a periodic
function involving low stress values. For low stresses,
the reformation processes of the elements will influence
the time dependent fracture considerably and cannot be
neglected.

With regard to the calculation of tb(9,¢) for cases
in which the applied stresses and the resulting stresses
oij(t) in the vicinity of a point under consideration
oscillate with a period v = 1/p, it i1s recognized that
the load o on any representative element will also be

periodic, thus

0(9:¢:t) = 0(9:¢:t - l’]T) (20)

where p is the frequency and n is the number of cycles
elapsed. We restrict our discussion to all the g, for

all 7 > O that are piecewlse continuous and

min o(6,¢,t) > o,

oststb

Also the frequency p is assumed large and in turn is

the number of cycles to fracture n It does not seem

'b.
possible to obtain an exact, analytical solution of
the system of governing equations in terms of known
functions at the present time. However, for the purpose

of gaining some useful and reasonable understanding
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of the fracture problem defined by (10), (14), (15)
and (20), let us replace the function F[f,0] by a
function F(f) such that

F(r) = %ITF[f,o]dt (21)
o]

where integration is performed with respect to t by
assuming f to be independent of time. Equation (21)
can be obtained by minimlzing the square error between
the two functions over each cycle., For the class of
problems under consideration here, this approximation
is Justified since for a short period T the variation
of £ over any cycle can be assumed to be small., This
may be expected from (14) and (15) since f changes from
one to zero over a large number of cycles. Similar
procedure based on (21) has been successfully used by
Coleman and Marquardt5 who obtained reasonable results
for a certain range of loads and for large frequencies.
Then using (21), we obtain a differential equation,
equivalent to (10) in the form

- - F(f) (22)

Q|Q
'ad hav!

which can be integrated by quadrature to glve the time-

to-break tb as

. =fl_6ﬁ_. (23)

In (22) we have replaced (10) by averaging both
sides over a cycle after assuming both f and df/dt to
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be constant during integration because of their slowly
varying nature. If we consider that fracture does occur
at the end of n_ cycles, then t, = Tn, and from (23)

1

1 ar
n, o= 3 ] T (24)

Another way of approximating F[f,0] is to replace
c by a constant Go such that the impulses over half the
cycle in both cases are equal. This ylelds

t/2
1 \
go(*L .Tg_f a(6,0,t)dt (0 =t < %)
o
(25)
T
o (). 2 o(6,9,t)at (T =t <)
/2
where Go(l) and 00(2) are functions of orientation
(6,4) and the solution to (10) becomes
1
af
b ‘fo FT, 0.7 (26)

which can be evaluated. This approximate solution (26)
may be expected to be good for loads at high frequencies
but it is difficult to estimate the errors involved.
Also the computations are quite cumbersome since we

must compute the value of f at the end of each half
cycle in order to obtain tb. This would involve solving
a large number of algebrailc equationg with more and

more terms as the frequency becomes larger and larger.

Having obtained the times-to-break tb(9,¢) for
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individual representative elements, statistical methods
can be used in obtaining the time-to-break EB for the
entire solid>. If emn(t) are the small strains, then

from the definition

(o) n(o,¢) = Eemn(O)smsn at £t = 0

where E 1s the elastic constant for any representative
element. Substituting into (1) we get

O
oijc(o) = Ecijmnemn(o)

where
c = [p(0,¢,e)s dw

Ua o SIS I~
iJjmn i¥3"m™n

If we define B, . as the inverse of C, . such that
ijmn ijmn

-1
ssmall =l sl
ijmn iJjmn
then
_ 0
Eemn(O) = BijmnC(O)Oij
and finally
o
IJ-(9,¢) = Bijmncijsmsn

Here both C. . and B, . are functions of orientation
1jmn 1Jmn
strain . Substituting (31) into (23), we can evaluate
the time-to-break tb(9,¢) for a representative element
directed along (6,¢). Equation (31) defines a general-
ized surface for each direction (9,¢) in six coordinates
st and determines whether a given element will ever
break or not under a given state of loading. The

statistical value Eb for a complete solid system is:
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- _[mee) pop 00

b \/E 0.0,z (32)

provided the integrals exist. Here we have assumed a
continuous distribution of elements throughout the
solid. However, no difficulties are encountered in
case the distribution is discrete. Through the use
of the relation

[P(e:¢,5)d® = 1
J
we can rewrite (32) as
2 =‘/Eb(e,¢,e) p(6,0,e)dw (33)

which can be easily computed once tb is known.

For a completely oriented solid, in which all the
elements are directed along Xz = direction, subjected
to a uniform simple tension GBS(t) = GBSC( ), equations

(9) and (10) reduce to

r(t) ¥(t) = og46(t) (34)
and
%%-: - F£,05,8(¢)] (35)

which can be easily solved. All the preceding equations
for a general partially oriented solid apply to completely
oriented solid if we substitute w(6,¢) by 055 The

entire solid will break at the same time as any
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representative individual element since the solid is
assumed to be homogenecus with perfectly oriented
elements.

In order to obtain some idea about the results,

let us specialize to the following types of loading.

1) Rectangular Pulses
When the periodic lcoading history is a series of

rectangular pulses defined as

9, (0=t < x71)

(x1 =t < 7)
where 0 ¢ x < 1, then F(f) becomes

+ (1 - x) Flf,0,]
Substituting into (21) we can compute t,. Some
numerical results are obtained for x = 1/2 and assumed
constants v, B, o and w_ (for aluminum at 406’0)4
and various values of € = 02/01. The results are

shown in PFigure 1.

2) Saw Tooth Loads
If the loading function is a series of triangular

pulses given by

1 2
2 t X% v (0=t = x7)
03-5(t) =
917%
1 T TI-x T(t-xT) (x1 =t =<7; x< 1)

then F(f) becomes

(36)

(37)

(38)
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We again obtair the same expression as in (39) for

F(f). It is clear from {(39) that the function F(f) is
independent of x. Numerical results 1In this case are
shown in Fig, 2 fer various values of € = 02/01 assuming
the same values for constants v. B, W, and Wy as in the

> - RPN
previous casc,

3) Sinuscidal Loads
The sinusoidal lcading history of the following
form is of importance because of obvious practical

enginecering applications.

S

N

>
N

<

GBSC(t) = o_ + o, sin(2mpt) (¢ = o, > 0) (¢

A
©] L

where O is the static mean or average stress. A large
number of experimental results deal wlith this type of
loading history. Consequently, there exists a good
deal of experimental data for comparison. In this

case we obtain
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Bo Bcl

of exp(22) T (52) - o (1-2) exp(- 52) 1_(L2) (a1)

F(f) = Q

where Io(x) = IO(-X) is the zeroth order hyperbolic
Bessel function. Through the use of (41), we can

compute time-to-break tb easily for various values of

Oy and 0. Unfortunately the integral cannct be expressed
in a closed form. Numerical results based on constants,

agsumed to be same as previous cases are shown in Figure 3.

It should be pointed cut that all of the numerical
regults are motivated toward establishing the qualitative
nature ot the time dependent fracture behavior only.
1t appears that 1t is successful as far as this purpose
is concerned. However, for guantitative comparison
with any experimental data, the various constants in

the formulation will have to be properliy determined.



17

REFERENCES

1. C. C. Hsiao, J. Appl. Phys. 30, 1492 (1959)

2. C. C. Hsiao, S. R. Moghe and H. H. Kausch von
Schmeling, to be published

3. 8. R. Moghe and C. C. Hsiao, J. Appl. Phys. 37,
3965 (1966)

4. H. H. Kausch von Schmeling, S. R. Moghe and C. C.
Hsiao, J. Appl. Phys. 38, 201 (1967)

5. B. D. Coleman and D. W. Marquardt, J. Appl. Phys.
29, 1091 (1958)

ACKNOWLEDGMENT

It is our pleasure to thank Dr., H. H. Kausch von
Schmeling for his interest and suggestions. Thanks are
also due to Mr, John Cheung for computations, Mr. Pin-
Hsun Kuo for drawing the figures and Miss Penelope Boyer
for typing the manuscript.




FUTPROT 9ABM JBTNIURBIODY JOJ SWTL 2JIN3OoBIg T 3Ty

09s) 9 60|
4 c- 9- Ol- 9]-
0]
ob
08 =
R
02l o,
10 09l ~
20 = 3 Ol=3 =
80=3 oowM,
. N
| 90= 2 o
Nb a
ove
| 10 |
h /. 08¢
Hh0 K \
2 / / /




3ulpeOT 9ABM JBTNIBUBTL] IO SWTL 9JIN30BI]

(29s) 9 boj

NI-

Ol-

90

o)

ho

91—

0
ob
08
ozl =
x
7))
09l =
o
o
002 ~
5
o
ob2 3,
082




SUTpPeOT 9ABM TEBPTOSNUTS J0J QWL 9JNgOoBIJ

¢ ‘314

(99s) Y Ho)
4 0 A 8- 2I- 9I- 02- v2- 82- z2¢- Ob-
002
///A\m.olw 0ov
/ /

Yl / B 009

T =3
(0012

} N
ﬁ I'0 =3 [~ 000!
0 o..%
AN NL/ yd
X7 TS (|hD

$S91}S  uDaW

( Qwody )



